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A B S T R A C T   

This paper presents a crowdsensing platform for real-time monitoring and analysis of noise pollution in smart 
cities. The aim is to develop a comprehensive methodology and scalable infrastructure for measuring noise using 
mobile crowdsensing, storing and analysis of gathered data. The developed system consists of: 1) a mobile 
application for participatory and opportunistic crowdsensing of noise data from different microlocations, pre- 
processing of collected data, and sending data to the cloud, 2) a big data infrastructure for storing data and 
real-time big data analysis, and 3) a web application for decision support. Further, we have created a method
ology that lets us select priority microlocations not typically covered by stationary measuring. The system has 
been evaluated experimentally; more than 4000 measurements were collected at five microlocations in the city of 
Belgrade, Serbia. Data was analysed in order to find the patterns that could serve for decision support to different 
stakeholders.   

1. Introduction 

Noise can be classified as any loud, unexpected, unwanted or un
pleasant sound. It can also be defined as a sound in the immediate 
environment, with detrimental effects on human hearing, health and 
quality of life [1,2]. Negative effects that noise can have on human 
beings can be classified into three groups: emotional, physiological and 
psychological (such as anxiety, sleep disturbance, or hearing impair
ment) [3]. Additionally, exposure to environmental noise can cause 
sleep disorders, high blood pressure and cardiovascular problems [4]. 
For these reasons it is necessary to pursue noise reductions in areas 
where it is significantly above the defined limits. 

All cities generate noise, as it is a product of their regular everyday 
function, with traffic systems being the major contributor [5–7]. These 
urban environments often have regulations regarding noise as well as 
rules regarding their measuring. The measuring of this noise is con
ducted by authorized, professional organizations in accordance with 
legally defined rules [8]. Measurement locations, as well as rules of 
measuring, are defined by the local authorities, with respect to inter
national regulative and standards [9]. Additionally, these laws and 
regulations often designate local government units with defining 

acoustic zones in their jurisdiction and the maximal values for noise 
indicators in these zones. 

Acoustic zones are made in settlements, zones along highways, main 
and regional roads or in busy city streets where transit, freight or city 
traffic take place. These zones are usually broad in scope and can serve 
to give a rough idea of the local noise levels, but a problem arises if it is 
necessary to know the noise level at a microlocation. Due to the small 
size of microlocations, it is rare for them to be incorporated in systems 
for noise measurement. A possible solution to measuring noise at these 
locations is crowdsensing [10–13], a method that promotes the local 
population into engaging in noise measurement activities using their 
mobile devices. 

The main goal of this research is the development of a mobile 
crowdsensing system for monitoring noise pollution in smart cities. 
Novelty of the work is reflected in the development of methodology with 
appropriate system implementation should enable collecting, storing 
and real-time visualization of noise pollution data. The data gathered in 
this way is showcased through advanced analysis of each measuring 
location, and its assorted noise indicators. These advanced analytics will 
be available in real-time, to both the citizens and government bodies, for 
any decision making regarding noise pollution management in smart 
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cities. The implementation and evaluation of the developed system were 
done in the city of Belgrade, the capital of Serbia. 

The rest of the paper is organized as follows. Section 2 presents noise 
measuring methodology, existing solutions for noise crowdsensing and 
regulations related to measuring noise pollution. In Section 3, we pre
sent a mobile crowdsensing system for monitoring noise pollution 
developed for the purpose of this research. Section 4 describes the 
methodology used to discover critical locations and daily periods of 
extreme noise, while Section 5 gives the analyses of the results obtained 
in more than 4000 measurements on selected locations in Belgrade. 
Section 6 presents conclusions made during the course of the research. 

2. Theoretical background 

2.1. Noise measuring methodology 

Noise indicators are used to determine the noise level in an envi
ronment [14,15]. In general, noise indicators are descriptors that ex
press limit values of noise in decibels [16]. The value of environmental 
noise indicator is determined through the implementation of a mea
surement and estimation method, set by regulations or standards. 

Before starting the noise measurement process, it is necessary to: 
define the objective of noise measurement, align the objective and 
implementation of noise measurement with existing regulations, define 
noise sources and time schedules of measurements [17]. 

Noise indicators developed for a specific context, such as a transport 
mode, although precise, can be hard to calculate, especially in complex 
environments that contain multiple noise sources. Therefore, both sci
entific and professional communities frequently use general environ
mental noise indicators, which are straightforward to calculate and 
understand [18]. The most popular general environmental noise indi
cator is Lden, which weights the noise differently according to day(Lday), 
evening(Levening), and night(Lnight) periods, allows the comparison 
among different infrastructures and can easily be represented through 
noise maps [18]. Noise measurement is carried out 24 h during a cal
endar day, which is divided into three reference time intervals:  

• The day lasts 12 h (in period 6− 18 h),  
• The evening lasts 4 h (in period 18− 22 h),  
• The night lasts 8 h (in period 22− 6 h). 

Noise level Lden for the day-evening-night scheme is expressed in 
decibels is calculated with the following equation [19]: 

Lday = 10log
1
24

(
12⋅100.1⋅Lday + 4⋅100.1⋅(Levening+5) + 8⋅100.1⋅(Lnight+10)

)

where Lday, Levening, and Lnight are A-weighted long-term average sound 
levels, determined for all daily, evening and night periods over one year, 
respectively. A-weighting is the standard frequency-weighting filter for 
instrument-measured sound levels commonly used in many national and 
international standards [20]. It covers audio range 20− 20 kHz and 
correlates with the loudness perceived by human ear. The measurements 
are expressed in dB(A) units. 

Besides calculating noise indicators, noise characteristics can be 
studied by analyzing its frequency spectra. The Fast Fourier Transform 
(FFT) has been proven to be a powerful tool for analyzing noise char
acteristics [21]. One of the benefits of transforming the signal from time 
domain to frequency domain is that the volume of data is reduced, and 
consequently data can be transferred through a communication medium 
faster; however, due to intensive computational requirements, spectral 
analysis requires processor time and consumes high power [22]. 

2.2. Analysis of existing traffic noise measurement systems based on 
crowdsensing 

Today, traffic noise data is usually collected by intelligent devices. In 
addition to simple measurements these devices can provide additional 
data and metadata; for this reason, a system for storing and analyzing 
this large amount of data is necessary. Recent advancements in IT, in 
particular big data technologies, have made it possible to efficiently 
store large amounts of data and offer advanced analytics in real-time. 
With the ubiquitousness of mobile devices, more convenient tech
niques for collecting noise data have emerged. Crowdsensing enables 
the gathering of environmental information through embedded sensors 
or other intelligent devices and transmission of captured data to inter
ested parties [23–26]. 

Traditional urban noise measurement techniques are expensive and 
usually applied in the official noise measuring done by professional 
agencies [27]. In contrast to these techniques are studies that seek to 
explore the potential of mobile crowdsensing for measurement and 
analysis of traffic [27–30]. Most of these studies rely on mobile appli
cations, such as EarPhone, NoiseSpy, NoiseTube, NoiseBattle and 
NoiseMap. Some of these applications are commercially developed ap
plications available at app-stores for Android or iOS devices, while 
others have been developed for research purposes. 

In the study [27] authors described the development of an EarPhone 
noise mapping system based on crowdsensing. EarPhone system consists 
of mobile applications and a central server. This system includes soft
ware for signal processing and noise measurement by mobile phone, as 
well as software for signal reconstruction on the central server. System 
testing involved measuring the noise levels at one of Brisbane’s main 
roads during its reconstruction. The measuring was done for one week, 
in periods 8− 9 h and 14− 15 h. Eight measurements were made each 
hour, and in each hour participants walked for five minutes and 
collected the data. The authors of the study expect that their system will 
significantly reduce operation costs compared to using traditional noise 
recording and mapping systems. 

NoiseSpy noise measurement system enables user collection and 
visualization of real-time noise levels while exploring different parts of 
the city [28]. This noise level measuring system uses a microphone on 
the mobile phone and a GPS receiver to determine the exact location of 
the measurement. System testing involved the use of courier bikes. 
During their routes, the system measures noise level and links it to the 
corresponding GPS data [28]. A similar concept for measuring noise was 
presented in the study [29] by testing the NoiseTube mobile crowd
sensing application. Unlike others, the NoiseTube application offers the 
ability to attach tags to individual recordings, sharing data directly from 
the application and is available on different mobile platforms such as 
Android and iOS [31]. In addition to the mobile application, NoiseTube 
also includes a web platform that allows users to research, visualize, 
analyze and search data. NoiseTube is the application that corrects 
location in aim to partially reduce positioning errors [32]. 

The authors in the study [33] found an innovative way to animate 
citizens while collecting and sharing noise data. Using the NoiseDroid 
project open-source noise measurement system, that requires users to 
move around the city and perform noise measurements. The city is 
divided into blocks, which the user "wins" by trying to make more noise 
measurements than the other participants. Besides the number of mea
surements, the algorithm also takes into account the quality of the 
measured noise. 

Researchers from the Technical University of Darmstadt have 
developed the NoiseMap application, which collects noise level data and 
sends it to the da_sense web platform [30]. The platform allows users to 
view collected noise data, generate graphs and noise maps. In a survey 
conducted in 2012, the researchers created a noise map for the city of 
Frankfurt, taking into account only the roads where more than 6 million 
vehicles pass annually. Unlike other projects, data is available using a 
public web service or JavaScript API. 
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Based on the literature analysis, it can be concluded that most of 
noise measurement systems utilizing crowdsensing in smart cities use: 1) 
mobile applications that use microphones to collect noise level data and 
a GPS receiver for the location of measurement; 2) web platforms for 
visualizing collected noise and location data. In the analyzed studies 
there are no plans for long term storing and management of large 
amounts of measured data or the capability of making complex analysis 
in real-time. The advantages of the developed system presented in this 
paper over the analyzed systems are 1) The developed system is devoted 
to storing data in a non-relational database, with straightforward 
deployment in the cloud; 2) data is collected for analysis of noise fre
quency spectra, which allows for a more sophisticated analysis of noise; 
3) data analysis based on large amounts of measured noise data is 
available in real-time. 

2.3. Accuracy and precision of noise measurements 

Accuracy of devices for measuring noise, in terms of closeness of the 
measurements to a real physical values, has been considerd in the 
literature from multiple points of view. In the context of crowdsensing, 
the accuracy of using mobile phones for measuring noise is of special 
interest. Comparisons of mobile phones to calibrated sound level meters 
(SLM) have shown a generally acceptable level of accuracy, leading to 
conclusion that crowdsensing is an acceptable method for measuring 
traffic noise [34]. In general, the accuracy of the noise level measured by 
a mobile phone depends on the characteristics of the mobile operating 
system, manufacturer, model and physical condition of the mobile de
vice [35,36]. In addition, the accuracy depends on the charactersitics of 
the microphone of the mobile phone. Results show that the linear range 
of a typical mobile phone microphone is 50–90 dB(A), which corre
sponeds to typical noise levels in urban environments [36]. 

The accuracy of the measurement can be imporved by the callibra
tion of the mobile device. Callibration is usually done with SLMs. Due to 
the mentioned differences in individual mobile devices [35], it is not 
possible to uniformly callibrate the mobile phones of participants in 
crowdsensing; other approaches need to be applied [10,35,37]. The 
analysis of literature has not pointed out any solutions for uniform and 
generally applicable callibration, not even for the identical models of 
mobile phones [38]. One possible solution would require manufacturers 
to publish the technical instructions for callibration of their devices in 
accordance with the standards [39]. 

Besides accuracy, the quality of measurement depends on the pre
cision, i.e. on the closeness of the measurements to one other. Precision 
depends on the configuration of the location, position of the mobile 
device in regards to the physical obstacles, orientiation of the mobile 
device, exposure of the microphone in regards to the noise source, etc. 
[36]. Additionally, the precision depends on the movements of the 
participant [40]. When there are many participants in the crowdsensing 
experiment, the precision can be improved by following strict mea
surement protocols [39]. 

In the context of data collection through mobile crowdsensing, it 
should be pointed out that the lower accuracy and precision of single 
devices can be effectively compensated through a high number of 
measurements using a high number of devices [41]. Higher reliability of 
summarized measurement results is achieved by combining data 
measured by numerous devices and applying different statistical 
methods and techniques for data cleaning, exploration and analysis 
[42]. 

2.4. Regulations for measuring traffic noise 

The EU is considered to be the leader in the field of noise measure
ment [43]. Member States have been mapping noise for many years, due 
to the provisions in the EU Directive 2002-49-EC [44]. The directive has 
encouraged advances in noise measurement methods and the creation of 
noise maps for many major cities [45]. Regarding the noise pollution, 

the EU has different laws for road, rail and air traffic, as well as for the 
industrial noise sources. Within urban areas, only major roads, major 
railways and major airports are considered. Unlike in Europe, where 
noise mapping is mandatory, the United States and Japan have laws that 
date back to the 1970s, but noise mapping is optional. In developing 
countries there is a general lack of legislation for measurement, evalu
ation and control of noise levels [46]. 

Limit values for noise pollution in the Republic of Serbia are defined 
in the Regulation on Noise Indicators, limit values, noise indicators 
assessment methods, annoyance and harmful effects of environmental 
noise. Table 1 shows the limit values for outdoor noise indicators, 
distributed across different zones [17]. 

3. A mobile crowdsensing system for monitoring noise pollution 
in smart cities 

In this research a mobile crowdsensing system for monitoring noise 
pollution in smart cities was developed. It consists of the following el
ements (Fig. 1): 1) crowdsensing mobile application, 2) cloud and big 
data infrastructures, 3) web application for monitoring noise pollution 
and data analysis, 4) a set of REST web services for communication 
between components. 

The developed crowdsensing mobile application has the following 
functionalities (Fig. 2) [47]:  

• recording noise using microphones from mobile devices,  
• recording the location of detected noise in the city using a GPS 

device, 
• performing spectral analysis over the audio data, and storing trans

formed data and location data in the cloud database,  
• displaying the noise level spectrum for the performed measurement. 

Performing spectral analysis consumes hardware resources, but it 
can be easily done on most of the smart phones. This leads to significant 
lowering the volume of data transmitted through the network, thus 
enabling quicker storing and analysis of measurements. Additionally, it 
contributes to the system scalability and leads to more efficient resource 
utilization [48]. 

The system supports three scenarios regarding the calibration of 
mobile devices:  

1 Full calibration. In this scenario, the mobile phone is calibrated in the 
laboratory, using the certified sound calibrators. This approach gives 
the highest accuracy of measurements, but is hard to implement in 
the crowdsensing experiments, since it would require a high number 
of participants to bring their phones to the laboratory. This approach 
also assumes other calibration techniques that require the usage of 

Table 1 
The limit values for outdoor noise indicators in Republic of Serbia.  

Zone Use of space 

Noise level in dB 

day and 
evening 

night 

1. Rest and recreation areas, hospital zones and spas, 
cultural and historical sites, large parks 

50 40 

2. Tourist areas, camps and school zones 50 45 
3. Purely residential areas 55 45 
4. Business-residential areas, commercial-residential 

areas and playgrounds 
60 50 

5. City centre, trade, administrative zone with flats, 
zone along highways, main and city roads 

65 55 

6. Industrial, storage and service areas and transport 
terminals excluding residential buildings 

The noise level 
mustn’t exceed the 
limit value of the 
adjacent zones  
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calibrated microphones, other mobile phones or similar devices for 
calibration [49].  

2 Calibration based on the model of the mobile phone. The developed 
mobile application can perform a general calibration of the mobile 
device based on the specific model of the mobile phone. The cali
bration is done by using the calibration data of other devices of the 
same model, if available in the database. The calibration is done 
remotely, upon user’s request. This approach does not provide the 
highest level of accuracy, but certainly contributes to the higher 
accuracy of measurements. The approach can be applied only to the 
common models of mobile phones, largely used in the participating 
population. Additionally, this approach can be improved in cases 
where phone manufacturers provide instructions for device 
calibration.  

3 No calibration. This approach is the most common in typical 
crowdsensing contexts. It provides the lowest accuracy of individual 
measurements, but an acceptable level of accuracy of summarized 
results based on the statistical methods and strong data post- 
treatment [50]. 

The main component of the system relies on the cloud and big data 
infrastructure. The server hosting the RESTful API is located within the 
cloud infrastructure. The RESTful API was created using the Flight 
framework [51]. The use of this RESTful API, allows us to make web 
services which can offer a scalable and straightforward way of accessing 
various data and actions provided by the underlying systems hosted on 
the same cloud infrastructure. 

Due to the limitations of NoSQL databases when it comes to schema 
design, a conventional relational database was chosen for the purpose of 
designing a model for calibration of mobile devices. A strict and struc
tured database schema would remove any potential problems that could 
arise from changes in the data, data format, and any potential data 
constraints. The system calibration schema is shown in Fig. 3 (For the 
simplicity, only the most important attributes are shown). 

By using a relational database to store user data and other data 
related to the user interaction in the web app, we have drawn a clear 
boundary between the storage of measurement data which is done by 
MongoDB and Redis, and mobile phone configuration and web app 
management which is done strictly by MySQL. This hybrid approach is 
expected to enable the implementation of various services that require 

Fig. 1. A mobile crowdsensing system for monitoring noise pollution in smart cities.  

Fig. 2. Crowdsensing mobile application.  
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querying data simultaneously from relational and non-relational sys
tems and advanced data analysis techniques for developing prediction 
models. 

Due to the large amounts of data collected through the crowdsensing 
mobile application, the system requires a big data infrastructure capable 
of storing large volumes of data in an efficient manner. MongoDB was 
chosen for this task due to its performance and storage capabilities. The 
data stored in MongoDB is primarily related to user measurements, and 
its primary task is to serve as a datasource for Spark analytics. Currently, 
MongoDB holds the following data: location data, maximum and 
average volume in dB(A), a complete spectral analysis result, i.e. a range 
of frequencies and their amplitudes. 

Redis is used as an in-memory data store for acceleration, caching 

and session management. Redis uses both MySQL data and MongoDB 
data for caching purposes, in order to speed up frequent queries, and 
web application based tasks. By coupling MongoDB and Redis with big 
data analytics in Apache Spark we can provide noise analysis in real- 
time and deliver the results to a user-friendly web application. 

Advanced analytics can be done by building and running models in 
Apache Spark. Possible scenarios include: detecting specific noise pat
terns, detecting deviations from typical noise profiles, predicting noise 
levels at specific locations, detecting the structure of the traffic by noise 
patterns, etc. While the current volume of data is relatively low 
compared to most Apache Spark workloads, the choice of Apache Spark 
as a platform was made with scalability of the system in mind. Future 
works and extensions of the system will bring increased volumes of data, 

Fig. 3. Data model for device calibration.  

Fig. 4. Web application.  
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and the real-time analytics are expected to be relevant for noise pollu
tion decision making related to control of IoT systems. 

The web application allows users to fully view, search and sort data 
about measured noise values (Fig. 4). Noise values at different locations 
in the city can be displayed in tables, maps and charts. The map contains 
markers of the recording locations; each marker contains metadata for 
individual measurement, such as location name, geolocation, recording 
time, and description. The web application allows downloading com
plete spectra of the gathered data. 

Some of the typical queries and use cases for the web application are:  

1 Predefined reports, such as heat map for the previous day, latest 
measurements, etc.  

2 Interactive search of the noise intensity by different parameters, such 
as by day, by month, by microlocation, by noise level, by frequency 
interval, or by any combination of these parameters.  

3 Advanced analytics can be presented by building and running models 
in Apache Spark  

4 Developing custom applications based on the provided API. 

4. Methodology and experimental settings 

Planning noise measurement requires several decisions: the choice of 
sensing methods, participants, devices, locations, and measurement 
periods. In relation to how participants are engaged, the most commonly 
used sensing methods are opportunistic and participatory. Opportunistic 
sensing is automatic data collection, where data collection does not 
occur in predetermined locations and time but rather during free and 
random movement of participants. Contrary to the opportunistic 
method is the participatory sensing method where the place and time of 
the measurement is predefined by the research organizer [52]. For this 
study, we chose the participatory sensing method because the number of 
participants and time of measurement were limited [53–55]. However, 
the users’ devices were not calibrated, in order to get insights into the 
quality if data that would be gathered in typical crowdsourcing 
scenarios. 

The participatory sensing method requires selection of the repre
sentative locations for measuring. A possible way to identify the 
required number of critical, representative locations of different types is 
based on similar patterns of traffic flow [56]. After selecting the loca
tions, participants are expected to visit the monitoring locations at some 
point, activate crowdsensing mobile application and, while moving 
randomly, spend 10 min at the assigned locations. Noise measurements 
at assigned locations are performed simultaneously by groups of two 
participants, using their mobile devices with installed crowdsensing 
mobile application, recording 10 audio clips, for one minute each. 

To implement the planned scenario, we propose a methodology that 
can support:  

• Location selection based on criticality assessment. The coefficient of 
criticality of candidate locations are determined on the basis of 
existing experience, knowledge and similar patterns of traffic flow. 
Some of the conditions are: traffic configurations (roundabout, 
street, crossroads, traffic lights, pedestrian crossings, speed); legal 
categories and characteristics of traffic participants (passenger cars, 
trucks, buses, rail vehicles). Depending on the observed location, the 
set of listed parameters that affect the noise level may be expanded 
with additional relevant parameters.  

• Recommendation of days and intervals for noise measurements.  
• Inclusion of additional factors that influence noise level. The noise 

level can also be influenced by: meteorological conditions (rain, 
snow, wind); type and quality of roadway; natural and artificial 
sound barriers etc. 

• Using measurement results, drawing conclusions and recommenda
tions. The results of data processing are presented in the form of 

conclusions and recommendations and they are available for future 
research and application. 

4.1. Location selection 

During the course of planning the experiment, following steps were 
taken: location description, determination of days, intervals and lengths 
of measurements and calculations of critical noise pollution coefficients. 

Location selection is based on an assessment of the criticality co
efficients of the location. The cumulative noise coefficient R, at a specific 
location, is estimated based on the influence of weighting factors. Esti
mation includes several successive steps:  

1 Identifying the permitted vehicle categories on the location The 
set of permitted categories of vehicle in the observed location is a 
subset of the prescribed vehicle categories by the statutory and 
standards.  

S = S{i | i ≤ n}⫅V{n | n∈N}                                                            (1) 

where: S - a subset of legal categories of vehicles allowed to pass through 
an observed location; V - a set of all legal vehicle categories; n - total 
number of legal vehicle categories.  

2 Calculation of the relative noise values of the vehicle categories 
on the location Based on the maximum, legal noise level of each 
vehicle category Lmax(i), from the set of S, calculate the relative 
value λ(i) with respect to the vehicle category, which, by standards 
and regulations, has the maximum noise level Lmax, and belongs to 
S:  

λ(i) = Lmax(i)/Lmax                                                                      (2) 

where: λ(i) - the relative noise value of the observed vehicle category; 
Lmax(i) - maximum permissible noise level of the vehicle category i; 
Lmax - maximum permissible noise level, comparing the Lmax(i) cat
egories of vehicles that belong to S. Values of λ(i) are location inde
pendent. The assumption is that technically correct vehicles participate 
in traffic and that they comply with the established traffic regime and 
current traffic regulations. 

3 Estimation of the time participation of individual vehicle cate
gories in a location Measure or estimate the relative time partici
pation of individual vehicle categories τ (i) in the observed 
measurement period T at the observed location is:  

τ(i) = t(i)/T                                                                                    (3) 

where: τ(i) - relative time participation of individual vehicle categories 
in relation to the continuous measurement period; t(i) - total time of 
participation of a certain category of traffic in the observed, continuous 
period; T - continuous measurement time interval. 

The relative temporal involvement of the vehicle can be measured at 
the observed location. In case when research resources are limited and 
measurements cannot be made, indirect information can be used. For 
example: frequency of city traffic at a location based on timetables of 
public transportation, traffic count results, etc. 

5. Incorporation of location correction factors 

The noise level also depends on the type and configuration of the 
location, meteorological conditions, traffic regulation at the specific 
location, etc. The correction factor is calculated as follows: 

C =
∑J

j=1
c(j) (4)  

where: C - cumulative location correction factor; c(j) – additional impact 
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on noise level (sound barriers, type of roadway, periodic noise source: 
stadium, ambulance, fire department, police). If: c(j)<1, the factor re
duces the noise level; c(j) ¼ 1, the noise level is not affected by the factor 
and c(j)>1, the factor increases the noise level. The cumulative 
correction factor is not easy to evaluate without concrete measurements. 
It requires elaboration and detailed studies, so they are not the subject of 
this paper. In case they are not calculated, adopted value is: C ¼ 1. 

6. Cumulative noise coefficients in a location as a product of 
individual factors 

The cumulative noise coefficient R, at a specific location, is estimated 
based on the influence of the calculated weighting factors λ(i), τ(i) and 
C:  

R = [ 
∑n

i=1λ(i)∗ τ(i)] * C                                                                (5) 

where: λ(i) - the relative noise value for the vehicle category i; τ(i) - the 
relative temporal participation of individual vehicle categories with 
respect to the continuous measurement period at the location; C - 
correction factor and n - the total number of vehicle categories at the 
observed location. 

The days and time periods for measuring noise levels can be 
randomly selected, or predefined. When the goal is to determine critical 
noise levels, the possible sources of data for selecting time periods are:  

• Preliminary measurements, if any, and available data.  
• Empirically, or based on other findings, whose level of reliability has 

not been explicitly demonstrated.  
• Statistical methods, whose theoretical assumptions have been 

applied in practice and in cases of solving similar problems [53].  
• Available applications, such as the Google Traffic application, which 

is based on the crowdsensing method of data collection. It provides 
data through the GPS function of mobile devices, recording the tra
jectories and speeds of owners of available mobile devices at 
observed location. 

6.1. Description of location, day, interval and length of measurement 

The proposed method for assessing the criticality of noise pollution 
was verified by conducting an experiment at five locations in the city 
centre of Belgrade: Bogoslovija, Bulevar Oslobodjenja, Studentski grad, 
Vojvode Stepe and Jove Ilića street. 

The cumulative noise coefficients were calculated for all chosen lo
cations. We document the implementation of the proposed method in 
detail using the example of the location Bogoslovija. 

Description of location, day, interval and length of measurement for 
the location Bogoslovija are:  

1 Crossroads type: roundabout  
2 Road type: Gateway  
3 Speed limit: 30− 50 km/h  
4 No traffic lights: (uncontrolled intersections, without signals, 

stop-controlled intersections with one or more "STOP" signs)  
5 Pedestrian crossings 5− 10 m from the roundabout  
6 City traffic stops at 20− 30 m from the roundabout  
7 There are no sound barriers  
8 Estimated duration of peak traffic: 5h  
9 Recommended measurement days: Monday to Friday (the 

assumption is that Saturday and Sunday are not critical)  
10 Recommended measurement time: 7.30–8.30 h and 15− 18 h 

(source: Google Traffic application)  
11 Prevailing influences on the criticality rank: the tram terminus. 

Because the traffic data doesn’t exist or is not public for the location 

Bogoslovija, we have selected the critical time intervals for noise mea
surement based on the data collected by the Google Traffic application. 
Available data are shown in the Table 2. 

Based on the available data, the highest traffic density at this location 
is in periods between 7− 9 h and 15− 18 h. The specified period corre
sponds to the reference time interval: day. Data shows that Saturday and 
Sunday are not critical, so due to limited resources, these measurement 
days are not necessary. 

An example of the calculation of the cumulative coefficient R for the 
location Bogoslovija is shown in the Table 3. 

Table 3 presents in detail the calculations of the individual impacts 
represented by the vehicle category on the resulting, cumulative noise 
rank of the target location. Column 1 contains the categories of repre
sented vehicles. Column 2 shows the highest legal noise levels of the 
represented vehicle categories listed in column 1. Column 3 shows the 
relative maximum noise level of the represented vehicle categories, 
calculated in relation to the noise produced in this case by trams (80 dB). 
Column 4 shows the total participation of vehicles represented in the 24- 
day cycle, and column 5 shows participation relative to the length of day 
(24 h). Finally, the individual and cumulative results are presented in 
column 6. Individual rankings of represented vehicles show that despite 
the participation of trams, motor vehicles have the highest criticality 
rank (M.1.1-1.2) because they traffic all day. The aggregate cumulative 
coefficient of a vehicle is the sum of the individual ranks: 1.644. 
Corrective coefficients are not included, C = 1 is adopted, so the final, 
total coefficient at the location is R = 1.644. 

Using the same methodology, based on the available input data and 
assumptions, the criticality coefficients of all other target locations were 
calculated and are shown in Table 4. 

By comparing the estimated criticality factors (Table 4, column 3), 
the first three locations appear to be significantly more exposed to noise 
compared to the remaining. The reason is the participation of noisier 
vehicle categories, especially in the case of locations with tram traffic 1, 
2 and 3. The estimated criticality factors are significantly lower in the 
case of locations 4 and 5. Location 4 is a city boulevard with heavy 
passenger car traffic and a low proportion of city buses, and location 6 is 
a residential street, used exclusively by passenger vehicles. 

The estimated criticality factors served to create a list of measure
ment priorities and to subsequently check the applicability of the pro
posed methodology. 

7. Analysis of results 

7.1. Exploratory analysis 

According to the national Regulation on noise indicators, limit 
values, methods for assessing noise, disturbance and adverse effects of 
environmental noise [17], the permissible level of noise in the city 
centre, zones along highways and city roads is 65 dB. 

The measurements were done in the period May 8–28, 2019, every 
day in the selected periods of the day. Data was collected using the 
described mobile application, by students of Faculty of organizational 
sciences, University of Belgrade. Before the data collection process 
started, the accuracy of the developed mobile application for noise 
measuring was checked. The application was installed on students’ 
phones, and a few measurements were performed using the developed 
app. In addition, the noise was measured using another sound metering 
app available for Android devices. The discrepancies in measurements 
were lower than 5 %, which was acceptable for further research. The 
dataset is available through the API of the developed system, at the 
following link: https://crowdsensing.elab.fon.bg.ac.rs/api/data-prote 
cted/f0b15414a63813e2d7f29e53d5d8d68d?page=1&limit=10&from 
=2019-05-08&to=2019-05-10 

The dataset can be selected by setting the parameters limit, from and 
to, in the given link. 

There were 4251 measurements in total: 109 measurements per day, 
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76 measurements in the periods 08− 10 h and 16− 18 h. Data was 
collected from different microlocations in the city of Belgrade, Serbia. 
Most of the measurements were done through participatory sensing at 
the selected microlocations shown in Table 4, but the sample included a 
number of measurements done through opportunistic sensing. The 

outliers were corrected; all the values above 95 percentile were assigned 
the values of the 95 percentile (Table 5). 

Fig. 5 shows the map of Belgrade with all the measurements. Red 
circles on the map present locations with the measured noise level above 
60 dB, orange circles represent noise level between 30 and 60 dB, while 
green circles present noise below 30 dB. 

Noise heatmap is presented in Fig. 6. Red areas present high noise 
levels, orange areas are for noise level within the allowed values, and 
green colour shows low noisy areas. 

Further analysis has been done for the five selected locations. Esti
mated criticality coefficients for the selected locations are presented in 
Table 6, as well as means and maximal values of the measured noise. 

The measured mean values show that the average noise level is 
within the normal limit. However, the maximal measured values show 
that there was measured noise above the allowed limit on all the loca
tions. Locations 3, 4 and 5 have high maximal values, more than 30 dB 
higher than the prescribed limit. Results also show that means for rush 
hours (8− 10 h and 16− 18 h) are higher than daily means for all loca
tions. The obtained measured results generally correspond to the esti
mated criticality coefficients. The main difference between the 
estimated ranks and the measured values is for locations 2 and 3. 
Location 2 has lower measured noise values than expected. The cause for 
this result may be the complexity of this location, which is near the 
highway and heavy crossroads but includes blocks of residential build
ings. It is possible that the measurements were done on microlocations 
closer to residential areas or that the criticality coefficient was not well 
estimated. 

The comparative results of the performed measurements and esti
mated criticality coefficients leads to the conclusion that the proposed 
approach can be used for planning noise pollution measurements. This is 
especially applicable for measuring noise pollution on microlocations 
where there are no stations for official noise monitoring, or when the 
resources needed for determining the critical microlocations are 
insufficient. 

7.2. Statistical analysis - Principal component analysis 

Further analysis was performed by considering the frequency spectra 
of the collected measurements. The dataset (Table 7) has 650 variables 
and 4251 measurements in total, so the dimensionality reduction is 
necessary for further analysis. 

The amplitudes of frequencies decrease as the frequency increases 
(Fig. 7), and at higher frequencies, the amplitudes are near zero. The 
highest amplitudes are at frequencies around 16 Hz, as well as the 
highest deviations. Having in mind that the highest amplitudes and 
deviations were measured for the frequencies up to 100 Hz, only mea
surements at these frequencies were considered in further analysis. 
Fig. 8 shows amplitudes and deviations for frequencies 0− 100 Hz. 

The correlation of measured values at frequencies 0− 100 Hz is 
shown in Fig. 8. Diagonal elements are frequencies 0− 100 Hz. Light 
colours in Fig. 8 show high correlations, while the dark colour represents 
low correlations. Frequencies 5 Hz and 10 Hz are highly correlated, (ρ =
0.93, light colours in the upper left corner) while the low correlations 
were observed between these frequencies and all the other frequencies 
(dark colours in Fig. 9). 

Further analysis was done using the method of principal component 
analysis (PCA) [58]. This is a multivariate analysis whose goal is to 
reduce the dimensionality of the dataset while keeping as much vari
ability as possible. Values of Kaiser-Meyer-Olkin [59] (KMO = 0.961) 

Table 2 
Recommended time and duration of measurements at location Bogoslovija.   

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Measurement periods 8− 8.30 h 15.30− 18 h 7− 9 h 15− 18 h 7− 9 h 16− 18 h 7− 9 h 15− 18 h 7− 9 h 15− 18 h 14.30− 15.30 h – 
Recommended measurement duration 4 h 5 h 4 h 5 h 5 h 1 h –  

Table 3 
Calculation of the cumulative coefficient R for the location: Bogoslovija.  

Presented 
categories of 
vehicles [57] 
(measurement 
periods are: 7− 9 h 
and 15− 18 h) 

Max 
legal 
noise 
level 
(dB) 

Relative 
noise level 
in relation 
to max 

t 
(h) 

Relative 
duration 

Individual 
rank 

1 2 3 4 5 6 

motor vehicles 
(M.1.1-1.2) 

68− 69 68.5/80 =
0.856 

24 
h 

24/24 = 1 0.856*1 =
0.856 

buses (M2.1-4, 
M3.1-2) 

70–73 
73/80 =
0.913 

5h 

5/24 =
0.21 (based 
on the 
timetable) 

0.913*0.21 
= 0.192 74–76 

trams(T) 80 80/80 = 1 5h 

5/24 =
0.21 (based 
on the 
timetable) 

1*0.21 =
0.21 

delivery vehicles 
and trucks(N1.1- 
2, N2.1-3, N3-1- 
2) 

69–78 
73.5/80 =
0.919 

10 
h 

10/24 =
0.42 

0.919*0.42 
= 0.386 73.5 

Cumulative noise coefficient based on vehicle categories Σ ¼ 1.644 
Other influences C ¼ 1 
Adjusted coefficient due to other influences 1.644*1 
Total noise coefficient at the location R ¼ 1.644  

Table 4 
Estimated criticality coefficients of chosen location for the experiment.  

ID Location Location type Estimated criticality 
coefficient (R) 

1 Location 1 Bogoslovija roundabout 1.644 
2 Location 2 Studentski grad busy city street 1.191 
3 Location 3 Vojvode Stepe busy city street 1.136 
4 Location 4 Bulevar 

Oslobodjenja 
city boulevard 0.721 

5 Location 5 Jove Ilića residential 
street 

0.527  

Table 5 
Number of measurements per location and per day period.  

Location Location type 

No. of measurements 

total 06− 18 
h 

18− 22 
h 

22− 06 
h 

Location 1 
Bogoslovija 

busy city 
street 

434 387 47 0 

Location 2 Studentski 
grad 

residential 
street 

295 268 25 2 

Location 3 Vojvode 
Stepe 

city 
boulevard 

337 263 59 15 

Location 4 Bulevar 
Oslobodjenja 

busy city 
street 

723 598 90 35 

Location 5 Jove Ilića roundabout 961 843 93 25 
Other  1501 1204 214 83  
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and Bartlett sphericity test (p = 0.00 < 0.01) are satisfactory, so the PCA 
can be applied for this dataset. Using the Kaiser criterion, two principal 
components were identified, and they explain 95 % of the variability in 
data. 

From the scree plot (Fig. 10) [58,60], we can conclude that the 

number of two components is adequate. This method considers char
acteristic square roots of corresponding components and then looks for 
the greatest inflection of the curve. We choose components left of the 
elbow, in this case, the inflection is on number 3, so 2 components are 
adequate for further analysis. 

Fig. 5. Map of Belgrade showing all measurements. (For interpretation of the references to colour in this figure text, the reader is referred to the web version of 
this article.) 

Fig. 6. Noise heatmap. (For interpretation of the references to colour in this figure text, the reader is referred to the web version of this article.)  
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Results obtained with PCA using the Varimax orthogonal rotation 
(Fig. 11) show that one component includes frequencies 0, 5, 10, 15 and 
20 Hz, while all the other frequencies belong to the second component. 

The obtained results show that further analysis of the data can be 
done by analysing the two identified components. In this way, the di
mensions of the dataset were reduced, and there is a lower probability of 
colinearity. In the further text, we analyse the identified components for 
the selected locations. 

7.3. Data analysis for the Location 2 - Studentski grad 

Mean values and deviations for the frequencies in the first compo
nent for days in the weak for the location Studentski grad are presented 
in Fig. 12. The sample size is n = 295. 

Fig. 12 shows that mean values seem lower on Thursdays and Sat
urdays, compared to the other days in the weak. In addition, figure 
shows high deviations within each day. 

Since the sample size is n = 295, using the central limit theorem, we 
can assume the normal distribution of data, and apply ANOVA for 
testing the differences in variances [61]. Levine test of homogeneity of 
variance gives p-value 0.00028 < 0.05, so we conclude that variances 
are not homogenous. 

ANOVA results F(6,288) = 2.312 (p = 0.049 < 0.05) lead to the 
conclusion that there is a statistically significant difference of 

Table 6 
Locations, relative criticality coefficients, noise means, and maximal values.  

ID Location Location type Relative criticality 
coefficients 

Means (in 
DB) 

Means for periods 8− 10 h and 16− 18 h 
(in DB) 

Maximal measured noise (in 
DB) 

1 Location 1 Bogoslovija roundabout 1.644/1.644 = 1 45.3 48 69 
2 Location 2 Studentski grad busy city street 1.191/1.644 = 0.724 40.5 42 73 
3 Location 3 Vojvode Stepe busy city street 1.136/1.644 = 0.691 43.3 49 102 
4 Location 4 Bulevar 

Oslobodjenja 
city boulevard 0.721/1.644 = 0.439 35.4 38 101 

5 Location 5 Jove Ilića residential 
street 

0.527/1.644 = 0.321 35.5 39 104  

Table 7 
Dataset description.  

Variable Type Description 

ID Int The ID of each measurement 
Location Factor(r) – 143lvl Location of measurement. There were 

143 identified locations. 
Avg Num The average value of measured noise in 

dB 
Max Num Max value of measured noise in dB 
Lat Num Latitude 
Lon Num Longitude 
Date Date, format: 

“2019-04-28” 
Date of measurement 

Day Factor – 7lvl Day in a week 
Time Chr Time of measurement 
PeriodDay Factor – 4lvl Morning, afternoon, evening, night 
Frequencies 

0–3195 
Num Measured value for frequencies 0–3195  

Fig. 7. Grouped frequencies and their amplitudes (X axis: grouped frequencies in Hz; Y-axis: amplitude in dB).  

Fig. 8. Amplitudes and deviations for 0–95 Hz (X axis: frequencies in Hz; Y-axis: amplitude and deviations).  
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frequencies for days in a weak. Post-hoc analysis was done using the 
Bonferroni test [62], and it shows that there is a statistical difference 
between values measured on Mondays and Thursdays (p = 0.0066), 
Mondays and Saturdays (p = 0.0112), Thursdays and Fridays (p =
0.0168) and Fridays and Saturdays (p = 0.0259). The measured noise on 
location Studentski grad is higher on Mondays and Fridays, comparing 
to Thursdays and Saturdays. 

7.4. Data analysis for the Location 3 - Vojvode Stepe on Mondays 

For the location Vojvode Stepe, the highest frequencies were 
measured on Mondays, so further analysis can reveal which periods of 
the day are the noisiest. 

Analysis of variance (ANOVA) shows that there is a statistically 
significant difference between the mean values measured in each period 
of the day. The post-hoc analysis shows that there is a statistically sig
nificant difference between periods 1 and 2, and periods 1 and 3. The 
highest level of noise was measured in the period 6− 18 h, while the 
noise was significantly lower after 6 pm (Fig. 13). 

7.5. K-means clustering 

In further analysis, we perform the cluster analysis in order to find 
typical clusters of noise measurements. Clustering was done using the k- 
means algorithm [58]. The input to this algorithm includes observations 
and the number of clusters. The algorithm finds the centroids of clusters 
and classifies all the observations into the closest cluster. The optimal 
number of clusters can be determined using the elbow method (Fig. 14). 

Fig. 14 shows two inflections, at values 3 and 4. For further analysis, 
we opted out for 3 clusters. Fig. 15 shows the results of clustering. 
Table 8 shows the number of measurements in each cluster. 

The main conclusions from the cluster analysis are:  

- Cluster 2 (green cluster) is the cluster with the lowest noise. The 
highest number of measurements at the location Jove Ilića (around 69 
%) belongs to this cluster. A relatively high number of measurements 
for the location Bogoslovija is also classified in this cluster. Further 
analysis would be necessary to determine what the exact similarities 
between the noise characteristics of these two locations are.  

- Cluster 3 (blue cluster) is the cluster with medium noise. The highest 
number of measurements classified in this cluster comes from the 
location Bulevar Oslobodjenja. However, measurements from the 
location Bulevar Oslobodjenja almost equally belong to clusters 1 and 
3. Dispersion of measurements from one location into different 
clusters is consistent with the previous conclusion that there are 
differences in the noise measured on different weekdays or different 

Fig. 9. Correlation matrix for frequencies 0–100 Hz.  

Fig. 10. Scree Plot - Elbow method (X axis: number of clusters; Y-axis: sum of squares within cluster).  

I. Jezdović et al.                                                                                                                                                                                                                                 



Sustainable Computing: Informatics and Systems 31 (2021) 100588

12

periods of the day. The numbers of observations at this location 
classified into cluster 3 per weekday are 49, 28, 27, 41, 19, 20, 60 
(Monday to Sunday, respectively). Sunday at Bulevar Oslobodjenja is 
a day with the lowest noise, so it is expected that the most mea
surements from this day would be classified in cluster 3.  

- Cluster 1 (red cluster) is the cluster with the highest noise. The most 
observations belonging to this cluster come from the location Bulevar 
Oslobodjenja, but there is also a number of observations from loca
tions Vojvode Stepe and Bogoslovija. All these locations show differ
ences in the levels of noise measured in different periods of the day 
and on different days of a week. 

8. Discussion and conclusion 

This paper presents a mobile crowdsensing system to monitor noise 
pollution in the city of Belgrade as well as recommendations for possible 
applications in other cities that are working on introducing new smart 
services. Noise pollution is one of the problems that today’s urban en
tities are facing while trying to ensure acceptable community 

functioning and healthy environment. The older city infrastructures, 
planned at a time without today’s heavy traffic, are most often under 
threat. As noise pollution is widespread throughout the city, it is difficult 
to solve the problem at the same time and immediately throughout the 
urban area. Therefore, the first step in taking the necessary actions to 
reduce noise levels to acceptable limits may be based on the estimated 
criticality levels at the target locations. 

At estimated critical locations, we applied the system that enables 
participatory and opportunistic collection of noise data on micro
locations using mobile phones. Thousands of users can take noise 
measurements, and thus generate large amounts of data. As such, this 
system requires corresponding big data infrastructure capable of scaling 
and real-time analysis. The used technologies (mobile, IoT, cloud and 
big data) have already been identified as the main enablers for the future 
environmental applications [63]. The goal of the conducted experiment 
was to evaluate the developed system and to analyse the possibilities for 
developing adequate decision support based on the collected data. 

Comparing to the other solutions presented in the literature, the 
presented work brings novelty in the research field which can be seen 

Fig. 11. PCA results.  

Fig. 12. Mean values and deviations for the frequencies in the first component 
for days in the weak for the location Studentski grad (X-axis: numbers 1–7 
represent Monday to Sunday; Y-axis: mean values and deviations). 

Fig. 13. Mean values of frequencies at location Vojvode Stepe on Mondays (X- 
axis: periods 1, 2 and 3 represent periods in a day 6–18 h, 18–22 h and 22–6 h, 
respectively. Y-axis: mean values and deviations). 
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through the following advantages. First of all, the developed system is 
based on open source technologies and therefore can be easily custom
ized to the project’s needs and integrated with other components. 

Secondly, the presented approach includes a methodology for selecting 
microlocations for noise measuring, enabling the crowdsensing process 
to be directed, which is expected to lead to usable conclusions. Then, the 
experimental part is based on a relatively high number of measurements 
and presents a few cases of data analysis and decision support, which 
lack in most of the papers present in the literature. Finally, the system 
was designed to be scalable, and it can easily be adapted to different 
contexts [64] and cities of all sizes. 

When considering a wider application of the developed system, the 
following implications can be identified:  

- Since it is based on mobile technologies, the developed system is 
more adaptive and available to different stakeholders, compared to 
stationary noise measuring. This can provide more accurate data 
about noise on the specific microlocations, not typically covered by 
stationary measuring. The accuracy is not achieved on the level of a 
measuring device, but by the high number of measurements and data 
analysis. 

- In our experiment, the participants were student volunteers. How
ever, the proposed system can be made available to all interested 
parties, and allow them to collect noise data on locations of interest. 
Residents can participate in opportunistic crowdsensing and collect 
data on different locations, or they can perform measurements in 
their neighbourhoods, and obtain data about noise pollution for 
specific microlocations. The collected data can serve as an indicator 
and a potential proof of increased noise pollution in a specific 
neighbourhood, therefore alerting the local government into taking 
the necessary steps.  

- The traditional urban noise measurement techniques are expensive 
and can be applied only on major roads, railways and airports. 
Although the proposed system can be used as a standalone, its full 
potential could be achieved by its integration with official systems 
for noise measuring and mapping, at a low cost. The developed 
system could provide officials with additional information, possi
bilities for data analysis, decision support in the detection of noise 
pollution trends, and early detection of noise pollution on 
microlocations.  

- Additional value is that data collected within this system can be 
provided as real-time open data. This would lead to higher trans
parency in smart cities and help citizens decide on many different 
matters, such as when deciding on the location of their future 

Fig. 14. Elbow method (X axis: number of clusters; Y-axis: sum of squares within cluster).  

Fig. 15. Model with 3 clusters (X-axis: frequencies 0–20 Hz. Y-axis: frequencies 
25–100 Hz). 

Table 8 
Number of measurements per cluster.  

Location C1(red) C2(green) C3(blue) 

Location 1 - Bogoslovija 114 200 120 
Location 2 - Studentski grad 35 72 188 
Location 3 - Vojvode Stepe 134 114 89 
Location 4 - Bulevar Oslobodjenja 278 196 249 
Location 5 - Jove Ilića 103 663 195  
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apartment. Furthermore, these data could be valuable in the urban 
planning and deciding in the process of building residential parts of 
the city. 

- After uncovering potential critical locations, followed by crowd
sensing verification, IoT technology can be used alongside neural 
networks to monitor and predict noise pollution levels online. 
Installed IoT devices may provide a large quantity of data at different 
time intervals and could initiate the available actions to reduce the 
noise level at the observed locations [65]. 

During the experimental phase of the research, a few problems have 
been identified. First, the availability of the volunteers who would 
participate in the research was limited. To overcome this constraint and 
obtain a significant amount of representative measurements, we have 
developed a methodology for selecting the microlocations and periods 
where and when the measurements would take place. Since it was not 
possible to obtain official data on participants in traffic, our methodol
ogy is based on creating traffic patterns based on the configurations of 
the microlocations and traffic regulations for each of them. Moreover, 
during the execution of our experiment, we had no data on previous 
measurements and peak traffic periods. So we used the Google Traffic 
application’s open data. In response to this issue, we believe it is useful 
to use the CrowdSenSim simulator, though the current edition simulates 
pedestrian mobility in urban areas [66]. Meanwhile, the simulator au
thors announced that they would supplement the current application 
scenarios with models of vehicle involvement in traffic flows. In this 
case, we expect the application of this simulator to offset some of the 
missing data we use in our research. 

The results of the performed analysis have confirmed that the esti
mated coefficients mainly corresponded to the data gathered in the 
experiment. However, in the case of a complex location of Studentski 
grad, it is necessary to repeat measurements, using strictly predefined 
tracks. 

Another limitation of the presented approach is related to the po
tential misuse of the application. Users have the possibility to input bad 
data by recording fabricated sounds. In order to solve this problem, 
additional spectral analysis can be used to identify data that does not fit 
the noise profile of the microlocation, and recordings could be compared 
to those made by other users. 

Finally, the technical characteristics of the presented approach may 
influence the accuracy of the results. Having in mind that the crowd
sensing is always based on various users’ devices with different char
acteristics, it is likely that there are measurements with significant 
errors, some of which may pass undetected in the analysis phase. 
However, the goal of the developed approach is not to achieve a high 
level of accuracy on the base of individual device, but to enable gath
ering enough data through crowdsensing to achieve acceptable level of 
accuracy. Additionally, the characteristics of mobile phones’ micro
phones may result in measured noise being lower than the real one. For 
the purpose of this research, we didn’t consider this to be a problem. If 
the noise level above the allowed is detected, the real noise can only be 
higher, so still above the allowed value. 

The system was implemented in the city of Belgrade and the results 
presented are important from a local perspective. However, the method 
of estimating critical locations is adaptable, meaning that it is possible to 
add new sources as well as different noise parameters. The existing 
system parameters for micro locations are common throughout urban 
environments, and are easily applied in other cities. Some of the com
mon parameters are: crossroads types, road types, speed limits, traffic 
lights, distance of pedestrian crossings, distance of city traffic stops, 
existence of sound barriers, traffic intensity, peak traffic hours and other 
prevailing influences. Additionally, the model provides five criteria 
based on criticality coefficients for location selection. These criteria can 
be utilized to further identify critical or interesting locations based on 
measured data. As a result, the system and its underlying concepts can 
be used to detect and analyse noise pollution in other cities and urban 

areas. 
One of the drawbacks of the realized experiment lies in the fact that 

the measurements were taken in a period of three weeks in May, so the 
presented results may not be generalizable for the whole year. However, 
this paper does not aim to provide a full analysis of noise data at the 
selected locations, but rather to demonstrate the capabilities of the 
developed system, and it’s potential to relevant decision-makers. The 
same argument applies for the selection of the evaluation context. 
Another potential drawback is related to the monitoring of users mobile 
phones in regards to the energy cost and effects of the monitoring app. 
Despite insufficient monitoring, the students who participated in the 
data collection reported no issues regarding their batteries or any other 
problems with performance. Having in mind that Android devices use 
ARM processors with hardware support for floating-point operations in 
double-precision arithmetic, the FFT is not expected to cause significant 
energy consumption. 

Based on the experience gained through the described research, 
several future work directions can be identified. The accuracy of 
selecting the microlocations for participatory crowdsensing relies on the 
quality of the available data. For example, in the case of complex 
microlocations, such as Studentski grad in our case, greater accuracy 
could be achieved by defining specific paths where the measurements 
should be done. This could be achieved by giving participant-specific 
GPS tracks and monitoring their movement during the measuring. 
Having in mind that it is not realistic to have a sufficient number of 
participants at all times, the optimal balance of participatory and 
opportunistic crowdsensing needs to be further researched and formu
lated. In addition, future work will be directed towards improving all the 
components of the proposed platform. Energy costs for participants 
joining the campaign will be measured, and the mobile application will 
be improved regarding the energy consumption. Finally, further 
research will be oriented towards developing a high-quality decision 
support system for crowdsourcing noise analysis based on deep learning 
and artificial intelligence. 
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I. Jezdović et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2210-5379(21)00077-9/sbref0320
http://refhub.elsevier.com/S2210-5379(21)00077-9/sbref0320
http://refhub.elsevier.com/S2210-5379(21)00077-9/sbref0320
https://doi.org/10.3390/app10031144
https://doi.org/10.1109/ACCESS.2017.2671678

	A crowdsensing platform for real-time monitoring and analysis of noise pollution in smart cities
	1 Introduction
	2 Theoretical background
	2.1 Noise measuring methodology
	2.2 Analysis of existing traffic noise measurement systems based on crowdsensing
	2.3 Accuracy and precision of noise measurements
	2.4 Regulations for measuring traffic noise

	3 A mobile crowdsensing system for monitoring noise pollution in smart cities
	4 Methodology and experimental settings
	4.1 Location selection

	5 Incorporation of location correction factors
	6 Cumulative noise coefficients in a location as a product of individual factors
	6.1 Description of location, day, interval and length of measurement

	7 Analysis of results
	7.1 Exploratory analysis
	7.2 Statistical analysis - Principal component analysis
	7.3 Data analysis for the Location 2 - Studentski grad
	7.4 Data analysis for the Location 3 - Vojvode Stepe on Mondays
	7.5 K-means clustering

	8 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


